CDK9-dependent RNA polymerase II pausing controls transcription initiation

نویسندگان

  • Saskia Gressel
  • Björn Schwalb
  • Tim Michael Decker
  • Weihua Qin
  • Heinrich Leonhardt
  • Dirk Eick
  • Patrick Cramer
چکیده

Gene transcription can be activated by decreasing the duration of RNA polymerase II pausing in the promoter-proximal region, but how this is achieved remains unclear. Here we use a 'multi-omics' approach to demonstrate that the duration of polymerase pausing generally limits the productive frequency of transcription initiation in human cells ('pause-initiation limit'). We further engineer a human cell line to allow for specific and rapid inhibition of the P-TEFb kinase CDK9, which is implicated in polymerase pause release. CDK9 activity decreases the pause duration but also increases the productive initiation frequency. This shows that CDK9 stimulates release of paused polymerase and activates transcription by increasing the number of transcribing polymerases and thus the amount of mRNA synthesized per time. CDK9 activity is also associated with long-range chromatin interactions, suggesting that enhancers can influence the pause-initiation limit to regulate transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclin T1/CDK9 interacts with influenza A virus polymerase and facilitates its association with cellular RNA polymerase II.

Influenza virus RNA-dependent RNA polymerase scavenges the 5' cap from host pre-mRNA to prime viral transcription initiation. It is also well established that viral RNA-dependent RNA polymerase (vRNP) associates with cellular RNA polymerase II (Pol II), on which viral replication depends. Here we report that cyclin T1/CDK9 can interact with influenza virus polymerase and facilitate its associat...

متن کامل

Estrogen receptor-α recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene

The MYB proto-oncogene is expressed in most estrogen receptor-positive (ERα(+)) breast tumors and cell lines. Expression of MYB is controlled, in breast cancer and other cell types, by a transcriptional pausing mechanism involving an attenuation site located ∼1.7 kb downstream from the transcription start site. In breast cancer cells, ligand-bound ERα binds close to, and drives transcription be...

متن کامل

Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences.

The human immunodeficiency virus type 1 (HIV-1) Tat protein activates transcription elongation by stimulating the Tat-activated kinase (TAK/p-TEFb), a protein kinase composed of CDK9 and its cyclin partner, cyclin T1. CDK9 is able to hyperphosphorylate the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase during elongation. In addition to TAK, the transcription elongation fa...

متن کامل

A Function for the hnRNP A1/A2 Proteins in Transcription Elongation

The hnRNP A1 and A2 proteins regulate processes such as alternative pre-mRNA splicing and mRNA stability. Here, we report that a reduction in the levels of hnRNP A1 and A2 by RNA interference or their cytoplasmic retention by osmotic stress drastically increases the transcription of a reporter gene. Based on previous work, we propose that this effect may be linked to a decrease in the activity ...

متن کامل

A Kinase-Independent Activity of Cdk9 Modulates Glucocorticoid Receptor-Mediated Gene Induction

A gene induction competition assay has recently uncovered new inhibitory activities of two transcriptional cofactors, NELF-A and NELF-B, in glucocorticoid-regulated transactivation. NELF-A and -B are also components of the NELF complex, which participates in RNA polymerase II pausing shortly after the initiation of gene transcription. We therefore asked if cofactors (Cdk9 and ELL) best known to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017